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Abstract

We prove the conjecture that a monopole in three-dimensional anti-de Sitter space can be com-
pletely determined by its “holographic” image on the conformal boundary two-sphere.
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1. Introduction

Viewed from the conformal two-sphere at infinity there is a fundamental difference
between hyperbolic space, which is anti-de Sitter space with positive definite metric,
and flat Euclidean space. The isometries of hyperbolic space,H

3, act as the full three
complex-dimensional set of conformal transformations on the conformal two-sphere at in-
finity, S2∞, while the isometries of Euclidean space,R

3, act with a large isotropy subgroup on
S2∞, with only a three real-dimensional set of conformal transformations surviving. In par-
ticular, one may detect the location of points in hyperbolic space from observations onS2∞.
More precisely, a point ofH3 uniquely determines a normal vector field onS2∞ by extending
geodesics from the point out to infinity. By interpreting the normal vector fields as differen-
tial 2-forms onS2∞, one can deal with a collection of points inH

3, showing that it uniquely
determines the sum of its 2-forms. In contrast, all points in Euclidean space appear the same
from S2∞, and only the number of points in a collection, not the locations, can be detected.
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A magnetic monopole is considered to be an approximation to a collection of points in
space, given by non-linear solitons concentrated at finitely many points. It has a limit at
infinity, that appears as a differential 2-form defined on the conformal two-sphere at infinity.
From the discussion above, it should not be surprising that in Euclidean space all monopoles
with the same charge—essentially the number of points of concentration—look the same
on the sphere at infinity, whereas in hyperbolic space a monopole is uniquely determined
by its limit at infinity. The latter fact is proven in this paper. Previously, Austin and Braam
[5] proved that for a half-integer mass (defined below) SU(2) monopole inH

3 the limit of
the monopole on the conformal boundary two-sphere completely determines the monopole,
and conjectured it to be true more generally. In this paper we prove the conjecture for any
positive real mass SU(2) monopole inH

3.
The concept of field theories being represented by observations at the boundary of

space–time has gained much recent interest. In particular, the AdS–CFT correspondence
proposes a relationship between string theory on anti-de Sitter space–time and conformal
field theory on the boundary[13,19], and this generalises to produce invariants of confor-
mally compact Einstein manifolds with conformal boundary[7]. Both gravity and gauge
theory require anti-de Sitter space rather than flat space when gaining information from
the conformal sphere at infinity. Further analogues between gravity and gauge theory are
suggested by various aspects of this paper such as the tantalising similarity between the
massm of a monopole and the sizeN of the matrix theory related to gravity. Also, the
calculation ofn-point functions using solutions of the scattering equation along geodesics
in H

3 is analogous to an approximation to the calculation of correlation functions using
path integrals appearing in the AdS/CFT correspondence, since the stationary phase ap-
proximation reduces the computation of the propagator to the study of the wave equation
along geodesics inH3. (For a closer analogy, perhaps it would be necessary to integrate the
n-point functions defined in this paper over the moduli space of monopoles.) We will not
comment further on these things in this paper.

The main tool in this paper is ann-point function 〈Pz1 · · ·Pzn〉 defined for a given
monopole and any ordered collection of points on the conformal boundary two-sphere
{z1, . . . , zn} ⊂ S2∞. Associated to the ordered collection of points is the set of geodesics in
H

3 running fromz1 to z2 and fromz2 to z3 and so on untilzn to z1. Then-point function is
a complex number assigned to the sequence of geodesics continuously differentiable in its
variables(z1, . . . , zn) obtained by solving a scattering equation along the geodesics. The
notation〈Pz1 · · ·Pzn〉 anticipates the construction of an algebra with expectation values
given by then-point function.

The 2-point function is used to settle the open conjecture that the holographic image of the
monopole on the conformal boundary two-sphere determines the monopole on hyperbolic
space. One can construct an abstract algebra freely generated by the points ofS2∞ satisfying
relations that use then-point functions. The 3-point function is used to prove that the
generators behave like projections, and the 4-point function encodes the fact that the algebra
possesses a finite-dimensional representation.

The two proofs that the holographic image of the monopole on the conformal bound-
ary two-sphere determines the monopole on hyperbolic space, given, respectively, for
half-integer mass by Austin and Braam[5] and for any mass using the 2-point func-
tion, have no a priori relation. The main role of the algebra assembled out of then-point
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functions is to supply a relationship between the two methods. A representation of the
algebra into a finite-dimensional vector space gives rise to a holomorphic map from the
two-sphere to lines in the vector space. Such a holomorphic map arises in the proof by
Austin and Braam.

1.1. Main results

Before describing the main results, we will define the objects of the paper. Atiyah[1,2],
first studied monopoles over hyperbolic spaceH

3. A monopole(A,Φ) is a solution of the
non-linear Bogomolny equation dAΦ = ∗FA whereA, is a connection defined on a trivial
rank two SU(2) bundleE overH

3 with L2 curvatureFA and the Higgs fieldΦ : H
3 →

SU(2) satisfies limr→∞‖Φ‖ = m, the mass of the monopole. The charge of the monopole
is defined to be the topological degree of the mapΦ∞ : S2∞ → S2∞. The hyperbolic metric,
featured in the Hodge star∗, may be replaced by the flat Euclidean metric, giving rise to
monopoles in Euclidean space. The gauge group of mapsg : H

3 → SU(2) acts on the
equations and we identify gauge equivalent monopoles. The construction of ann-point
function from a monopole is a gauge invariant procedure. On the conformal boundary
two-sphere, a monopole has a well-defined limit, given by aU(1) connection[11,18],
which we call the holographic image of the monopole.

There is an integrable structure underlying hyperbolic monopoles, best seen on the com-
plex surface of geodesics,CP

1 × CP
1 − ∆̄ (where∆̄ ⊂ CP

1 × CP
1 is the anti-diagonal).

In the Euclidean case, over its surface of geodesicsTCP
1, twistor space techniques are

used in[8,9] to understand the construction of monopoles, and the conserved quantities of
monopoles. The main tool is the scattering equation:

(∂At − iΦ)s = 0 (1)

defined for local sectionss of E along a geodesic inR3 parameterised byt. In particular,
those geodesics along which anL2 solution of(1) exists, form a compact algebraic curve
insideTCP

1, called thespectral curve. Analogously, solutions of(1) along geodesics in
H

3 are used to study hyperbolic monopoles[1,2,16] and define the spectral curve of the
monopoleΣ ⊂ CP

1 × CP
1 − ∆̄.

For z1 �= z2, define the 2-point function〈Pz1Pz2〉 to be a positive real number asso-
ciated to(A,Φ) and the geodesic inH3 joining z1 and z2 on the conformal boundary
two-sphere as follows. Along this geodesic, choose a solutions+(t) of (1) that decays
as t → ∞. Notice that the parametert involves a choice of orientation of the geodesic.
Choose a decaying solutionr+ of (1) along the same geodesic oriented in the opposite di-
rection. In terms of the oppositely oriented parametert used in(1), r+(t) is a solution of the
equation:

(∂At + iΦ)r = 0 (2)

andr+(t) decays ast → −∞. The inner product(r(t), s(t)) of any two solutions of(1) and
(2) is independent oft. If we normaliser+(t) ands+(t) by

lim
t→∞ exp(mt)‖s+‖ = 1, lim

t→−∞ exp(−mt)‖r+‖ = 1, (3)



16 P. Norbury / Journal of Geometry and Physics 51 (2004) 13–33

then the decaying solutions are well-defined up to phase and the number|(r+, s+)|2 depends
only on the geodesic and(A,Φ). Define

〈Pz1Pz2〉 = |(r+, s+)|2

for r+, s+ defined along the geodesic joiningz1 andz2. Then-point function is a complex
number defined similarly using decaying solutions of(1) along the set of geodesics running
between consecutive points of an orderedn-tuple of points inS2∞. For the definition of the
n-point function and justification of parts of the definition of the 2-point function given here
seeSection 2.

Theorem 1.1. The2-point function uniquely determines the spectral curve of(A,Φ).

This theorem is rather straightforward. Its power comes from combining it with the deeper
theorem that the 2-point function also encodes the holographic image of the monopole on
the conformal boundary two-sphere, given by aU(1) connection. TheU(1) connection is
expressed with respect to a family of gauges related to the spectral curve of the monopole.
More explicitly, for each pointw ∈ S2∞, the 2-point function enables one to express theU(1)
connection over the conformal boundary two-sphere with respect to a gauge defined over
the complement of the points{z1, . . . , zk} that satisfy(w, zi) ∈ Σ, the spectral curve of the
monopole. Each such gauge is determined uniquely by properties described inProposition
2.11. The situation is rigid enough that theU(1) connection uniquely determines the 2-point
function.

Theorem 1.2. The2-point function determines and is determined by the holographic image
of the monopole on the conformal boundary two-sphere.

The spectral curve determines the monopole over hyperbolic space up to gauge equiv-
alence. This is a rather deep non-constructive property of monopoles. It uses the (non-
constructive) existence of a trivialisation of a holomorphic line bundle over the spectral
curve and sheaf cohomological constructions to retrieve the monopole. Using this we are
able to conclude the following corollary.

Corollary 1.3. The holographic image of the monopole on the conformal boundary two-
sphere determines the monopole up to gauge equivalence.

One might expectCorollary 1.3to follow from a maximum principle applied to a (non-
linear) boundary value problem. This approach was pursued in[17] with only partial
success.

An associative algebra can be studied via the values of a linear function, which we call
expectation values, defined over the algebra. In some cases, the structure coefficients of
the algebra, with respect to a generating set, can be retrieved from the expectation values,
thus uniquely determining the algebra. Conversely, one may begin with an abstract set
of generators with no a priori algebra structure and use expectation values to define the
structure coefficients of the algebra.
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Consider the algebra freely generated by the points of the conformal boundary two-sphere,
where we notate the generators byPz, z ∈ S2∞, and add the relations:

∃c = c(z1, z2, . . . , zn) ∈ C, Pz1Pz2 · · ·Pzn = cPz1Pzn when 〈Pz1Pzn〉 �= 0.

(4)

We suppose that then-point function defined by a monopole gives the expectation value
of the productPz1Pz2 · · ·Pzn and we extend this function linearly to the algebra. Then by
taking the expectation values of each side of(4)we can calculate the scalarc. This essentially
defines the algebra structure.

The boundary algebra of a monopole is a slight modification of the construction of the pre-
vious paragraph. We will add further relations to the algebra in the form of “non-degeneracy”
conditions, and enlarge the algebra using derivations.

Definition 1.4. Define the boundary algebra

S(A,Φ) = {A, ∗, Pz ∈ A, z ∈ S2
∞, 〈· · · 〉}

for any hyperbolic monopole(A,Φ), to consist of:

(1) an involutive algebra(A, ∗) defined overC;
(2) generatorsPz = P∗

z , for all z ∈ S2∞;
(3) derivations [∂z, ·] : A→ A and [∂z̄, ·] : A→ A;
(4) further generators [∂z, Pz], [∂z̄, Pz], [∂z, [∂z, Pz]] , . . . ;
(5) a linear function〈· · · 〉 : A → C that restricts to then-point function of(A,Φ) on

productsPz1Pz2 · · ·Pzn , satisfying〈a∗〉 = 〈a〉, ∂z〈a〉 = 〈[∂z, a]〉
with the relations:

(6) 〈Pz1Pz2〉 = 0 ⇒ Pz1Pz2 = 0;
(7) 〈aPz〉 = 0 for almost allz ∈ S2∞ ⇒ a = 0;
(8) ∃c = c(z1, z2, a, b) ∈ C, Pz1aPz2 = cPz1bPz2 whenPz1bPz2 �= 0.

wherea, b ∈ A.

To give an indication of the various features of the algebra we will mention five properties
proven in the paper:

• one can make sense of the 1-point function as the constant function〈Pz〉 ≡ 1;
• the 2-point function takes its values on the unit interval;
• P2

z = Pz;
• Pz1 �= Pz2 for z1 �= z2;
• Pz[∂z, Pz] = 0.

Identities involving the 4-point function arise when trying to find a representation of the
algebra in which the expectation values of observables are given by traces. We have been
unable to directly prove these identities, described in the conclusion. Instead we use the fact
that such a representation produces a holomorphic mapS2∞ → CP

k, wherek is the charge
of (A,Φ), and compare the setup to something more familiar.
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Theorem 1.5. There exists a finite-dimensional representation ofS(A,Φ) in which the
expectation values are given by traces.

The holomorphic sphereS2∞ → CP
k associated to the finite-dimensional representation

is reminiscent of that arising in the work of Austin and Braam[5], and proves to be the
source of many further interesting properties. It can be obtained without the algebra and
gives an alternative proof that the connection on the conformal boundary two-sphere deter-
mines the monopole up to gauge equivalence. It also uncovers further features. Amongst
these is an application of geometric invariant theory to define the centre of a hyperbolic
monopole. One also gets new information regarding rational maps associated to monopoles.
Specifically, given a point at infinity, there is a one-to-one mapping between gauge equiv-
alence classes of monopoles and degreek based rational mapsS2∞ → S2 well-defined up
to aU(1) action. It has never been understood how the rational maps for different points at
infinity are related. The holomorphic sphere gives such a relation. These results will appear
elsewhere[14].

One can take finite-dimensional sub-algebras ofS(A,Φ) and find further structure. In the
conclusion we describe a family of sub-algebras parameterised by the spectral curve of the
monopole. This is particularly interesting due to the conjecture of Atiyah and Murray[3,4]
that spectral curves of hyperbolic monopoles may parameterise solutions of the Yang–Baxter
equation.

2. The n-point function

In this section we will define then-point function associated to a monopole. As mentioned
in Section 1the geodesics pass near to approximate locations of the monopole and produce
ann-point function continuously differentiable in its variables(z1, . . . , zn). We will prove
that as a geodesic moves out to infinity and away from the monopole, it feels little effect,
and thus the limit of then-point function as two consecutive points come together is the
(n−1)-point function, and the 1-point function is naturally given by the constant function 1.

2.1. Definition of〈· · · 〉

The function〈· · · 〉 defined onn-tuples of points inS2∞ is invariant under cyclic permu-
tations of the points (and hence behaves like a trace on the boundary algebra). In what
follows, we first define then-point function〈Pz1 · · ·Pzn〉 for zi �= zi+1, zn �= z1. This is a
fundamental quantity in that all other values of〈· · · 〉 are derived from it. We use limits to
remove the restriction on then-tuples{z1, . . . , zn}.

Along any geodesic ofH3 parametrised byt, the scattering equations:

(∂At − iΦ)s = 0, (∂At + iΦ)r = 0 (5)

are defined for local sectionss, r of E. Any pair of solutions has the property that the inner
product(r(t), s(t)) is independent oft, since

∂t(r(t), s(t)) = ((∂At + iΦ)r(t), s(t))+ (r(t), (∂At − iΦ)s(t)) = 0.
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It can be shown[9,12] that that there are solutionss andr unique up to respective constants
that decay like O(exp(−mt)) ast → ∞, respectively, like O(exp(mt)) ast → −∞. Thus
two non-trivial solutionss+, r+ are uniquely determined up to phase by the conditions
that

lim
t→∞ exp(2mt)‖s+‖2 = 1, lim

t→−∞ exp(−2mt)‖r+‖2 = 1, (6)

〈Pz1 · · ·Pzn〉, zi �= zi+1, zn �= z1.

For distinct{z1, . . . , zn}, 〈Pz1 · · ·Pzn〉 is a complex number associated to(A,Φ) and the
n oriented geodesics inH3 travelling fromz1 to z2, thenz2 to z3 and so on, untilzn to
z1. Notate byr12, s12 the solutionsr+, s+ of (5) along the geodesic running fromz1 to z2
andr23, s23 the solutionsr+, s+ along the geodesic running fromz2 to z3 and so on up to
rn1, sn1. Further, align the phases of eachri,i+1, si−1,i as follows. The consecutive solutions
s12 andr23 have the property that they define a common subspace of the fibre ofE at z2 at
infinity, or in other words that

lim
t→∞ exp(mt)s12 = c lim

t′→−∞
exp(−mt′)r23

for c ∈ C
∗. Chooser23 so thatc = 1. Similarly, choose a phase forri,i+1 usingsi−1,i and

for r12 usingsn1. Define

〈Pz1 · · ·Pzn〉 = (r12, s12)(r23, s23) · · · (rn1, sn1), (7)

which depends only on(A,Φ) and the oriented geodesics running in order through
z1, z2, . . . , zn, z1. The 2-point function defined inSection 1can be obtained by setting
n = 2 in this construction. In this case the function is real-valued and independent of the
orientation of the geodesic and the choice of phases.

Lemma 2.1. Whenzi �= zi+1, zn �= z1, the n-point function〈Pz1 · · ·Pzn〉 is continuously
differentiable inz1, . . . , zn.

Proof. Fix z2, z3, . . . , zn and varyz1 = z. The product on the right hand side of(7)defining
〈PzPz2 · · ·Pzn〉 contains thez dependent sectionsr12(z), s12(z), rn1(z) andsn1(z) with the
others constant asz varies. In[9] (and[12] for hyperbolic monopoles) it was shown using
a bijection between nearby solutions that the assignment ofr12(z), etc., is continuously
differentiable inz. Thus, the same is true of inner products involving thez dependent
sections, such as〈PzPz2 · · ·Pzn〉. �

For a generaln-tuple of points{z1, . . . , zn}, we define〈Pz1 · · ·Pzn〉 by continuity.Lemma
2.1shows that such a definition is consistent. The following lemma explicitly calculates the
limits that arise when two pointszi andzi+1 come together.

Lemma 2.2. The2-point function satisfieslimz1→z2〈Pz1Pz2〉 = 1 and the n-point function
satisfieslimz1→z2〈Pz1Pz2Pz3 · · ·Pzn〉 = 〈Pz2Pz3 · · ·Pzn〉.
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Proof. We will prove only limz1→z2〈Pz1Pz2〉 = 1 since the proof of the limit of then-point
function is essentially the same. We define〈Pz1Pz2〉 = |(r+, s+)|2 for solutions of(5)
satisfying(6). If the connection is trivial and the Higgs field is constant:

∂At ± iΦ = ∂t ± i

(
im 0

0 −im

)
, (8)

thenr+ = exp(mt)( 1 0) ands+ = exp(−mt)( 1 0) so(r+, s+) = 1 as required.
As z1 → z2, the connection and Higgs field become more trivial and constant, respec-

tively. More precisely, there exists a gauge in which

∂At ± iΦ = ∂t ± i

(
im 0

0 −im

)
+ ε · C exp(−m|t|), (9)

whereC is constant andε → 0 asz1 → z2. This follows from Rade[18].
Levinson’s theorem[6] uses a contraction mapping argument to show that solutionsr+

on (−∞,0] ands+ on [0,∞) of (9) (using iΦ and−iΦ, respectively) are in one-to-one
correspondence with solutions of(8). Moreover, the norm of the difference between corre-
sponding solutions is controlled by theL1 norm of the perturbation termε ·C exp(−m|t|).

In other words, asz1 → z2, the solutionsr+ ands+ tend uniformly to the solutions of
(8) on (−∞,0] and [0,∞), respectively, and in fact on any(−∞, R] and [−R,∞). The
inner product(r+, s+) can be calculated at any pointt ∈ R, in particulart ∈ [−R,R] so
(r+, s+) → 1 uniformly. �

Thus, we define

〈P2
z2

〉 := 1, (10)

〈P2
z2
Pz3 · · ·Pzn〉 := 〈Pz2Pz3 · · ·Pzn〉. (11)

Applying the relation (7) given inDefinition 1.4to (11), we get the relation:

P2
z = Pz, z ∈ S2

∞, (12)

so (10) and (12)allow us to extend the definition of then-point function to the 1-point
function:

〈Pz〉 := 1 (13)

and from this it follows that

〈[∂z, Pz]〉 = 0 = 〈[∂z̄, Pz]〉. (14)

As described inSection 1, expectation values are used to calculate the constantc in relation
(8). WhenPz1Pz2 = 0, the expectation values of both sides of (8) are zero, so we instead
choosez0 so that〈Pz0Pz1bPz2〉 �= 0. (By relation (7),z0 always exists.) Then

〈Pz0Pz1aPz2〉 = c(z1, z2, a, b)〈Pz0Pz1bPz2〉 (15)

enables us to calculatec(z1, z2, a, b). This introduces the issue of consistency of the algebra
since the constantc(z1, z2, a, b) can be calculated in different ways. The following lemma
gives the required property of then-point function.
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Lemma 2.3. For a ∈ A, 〈Pz0Pz2〉〈Pz0Pz1Pz2a〉 = 〈Pz0Pz1Pz2〉〈Pz2aPz0〉.

Proof. For a = Pz3Pz4 · · ·Pzn , wherezi �= zi+1, this follows simply from the definition.
Taking limits and derivatives gives the result for generala ∈ A. �

2.2. Properties

The Bogomolny equation implies that the Higgs fieldΦ satisfies a maximum principle
‖Φ‖ < mwherem is the mass of the monopole. This leads to a type of dissipative behaviour
of (∂At − iΦ) which can be used to show the following lemma.

Lemma 2.4. For zi �= zi+1, zn �= z1, |〈Pz1 · · ·Pzn〉| < 1.

Proof. Since〈Pz1 · · ·Pzn〉 = (r12, s12)(r23, s23) · · · (rn1, sn1) it is sufficient to show along
any geodesic that the solutionss+, r+ of (5) satisfy|(r+, s+)| < 1, and in fact

|(r+, s+)|2 = lim
t→−∞ |(r+(t), s+(t))|2 = lim

t→−∞ |(exp(−mt)r+(t),exp(mt)s+(t))|2

≤ lim
t→−∞ ‖exp(−mt)r+(t)‖2‖exp(mt)s+(t)‖2 = lim

t→−∞ ‖exp(mt)s+(t)‖2

so we will show that limt→−∞‖exp(mt)s+(t)‖2 < 1. We have

|∂t‖s+‖2| = |((∂At + iΦ)s, s)+ (s, (∂At − iΦ)s)| = |(2iΦs, s)| < 2m‖s, s‖2,

where the last inequality uses the maximum principle|Φ| < m. Thus

∂t‖exp(mt)s+‖2 = (2m‖s, s‖2 + ∂t‖s+‖2)exp(2mt) > 0.

So the function‖exp(mt)s+‖2 is strictly increasing, and by construction ofs+, limt→∞
‖exp(mt)s+(t)‖2 = 1 yielding the required inequality:

lim
t→−∞ ‖exp(mt)s+(t)‖2 < 1. �

Corollary 2.5. Pz1 �= Pz2 for z1 �= z2.

Proof. If Pz1 = Pz2 then〈Pz1Pz2〉 = 〈P2
z2

〉 = 1 which contradictsLemma 2.4. �

Until now, we have only used the fact that(A,Φ) satisfies the Bogomolny equation very
mildly via the maximum principle forΦ and Rade’s estimates for the monopole field. Using
the full structure of the Bogomolny equation we can show that the assignmentz �→ Pz
possesses a holomorphic property. It is used to prove the most striking properties of the
2-point function and the existence of a useful finite-dimensional representation ofA.

With respect to particular local coordinate systems, the Bogomolny equation dAΦ =
∗FA decomposes into a holomorphic part and a “moment map” part. Specifically, this
occurs for local coordinate systems that reflect the holomorphic structure on the variety
of geodesics. Two examples of this are the local coordinates(t, z) in H

3 obtained from a
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family of geodesics, each parametrised byt, travelling from the fixedw ∈ S2∞ to the varying
z ∈ S2∞, and the local coordinates(t, w) in H

3 obtained from a family of geodesics, each
parametrised byt, travelling from the varyingw ∈ S2∞ to the fixedz ∈ S2∞. The Bogomolny
equation decomposes into [∂Az̄ , ∂

A
t − iΦ] = 0, or equivalently, [∂Az , ∂

A
t + iΦ] = 0, and a

second equation which we will omit. Similarly, [∂Aw, ∂
A
t − iΦ] = 0 and the equivalent

[∂Aw̄, ∂
A
t + iΦ] = 0 are consequences of the Bogomolny equation. In particular, ifr+ and

s+ are decaying solutions of(5) then

∂Az r+ = µ1(w, z)r+, ∂Az̄ s+ = λ1(w, z)s+,
∂Aw̄r+ = µ2(w, z)r+, ∂Aws+ = λ2(w, z)s+ (16)

for (scalar) coefficientsµi, λi independentof t. (These are used to obtain a holomorphic
bundle, with sub-line bundles on the variety of geodesics ofH

3, [2,8].)

Proposition 2.6. Pz[∂z, Pz] = 0 = [∂z̄, Pz]Pz andPz[∂z̄, Pz] = [∂z̄, Pz].

Proof. In fact, the three relations are trivially equivalent, so we will prove onlyPz[∂z̄, Pz] =
[∂z̄, Pz]. Consider the 3-point function:

〈Pz1Pz2Pz3〉 = 〈Pz1Pz2Pz〉 = (r12, s12)(r23(z), s23(z))(r31(z), s31(z)), (17)

wherez3 = z is allowed to vary,z1 andz2 are fixed and different fromz, andrij , sij are the
solutions of(5) along the geodesic running fromzi to zj. We have

∂z̄〈Pz1Pz2Pz〉 = 〈[∂z̄, Pz1Pz2Pz]〉 = 〈Pz1Pz2[∂z̄, Pz]〉 (18)

and this will be used to characterisePz[∂z̄, Pz].
By (16) the Bogomolny equation implies that∂Az r23(z) = µ(z)r23(z) with z dependent

coefficient, and∂Az̄ s23(z) = λ(z)s23(z), since we are moving only one end of the geodesic.
The limit limt→−∞ r23(z) is independent ofz so we can multiplyr23(z) by a function
depending onz and arrange thatµ(z) = 0, whilst preserving its normalisation att = −∞.
(We cannot do the same forλ(z).) Thus

∂z̄(r23(z), s23(z)) = (∂Az r23(z), s23(z))+ (r23(z), ∂
A
z̄ s23(z)) = λ(z)(r23(z), s23(z)).

If we differentiate(17) then we get

〈Pz1Pz2[∂z̄, Pz]〉 = λ(z)(r12, s12)(r23(z), s23(z))(r31(z), s31(z))

+(r12, s12)(r23(z), s23(z))∂z̄(r31(z), s31(z)).

Let z2 → z. Then as shown in the proof ofLemma 2.2, (r23, s23) → 1 so

lim
z2→z

〈Pz1Pz2[∂z̄, Pz]〉 = λ(z)(r12, s12)(r31, s31)+ (r12, s12)∂z̄(r31, s31) = 〈Pz1[∂z̄, Pz]〉.

Hence〈Pz1Pz[∂z̄, Pz]〉 = 〈Pz1[∂z̄, Pz]〉 for all z1, so we get the relation

Pz[∂z̄, Pz] = [∂z̄, Pz]

as required. �
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We call this a holomorphic relation since it gives a type of integrability condition whereby
∂̄ is preserved byP , and since it will translate precisely to an integrability condition when
we construct a representation ofA.

By Proposition 2.6∂z̄〈PwPz〉 = 〈PwPz[∂z̄, Pz]〉 so that

〈PwPz〉 = 0 ⇒ ∂z̄〈PwPz〉 = 0.

This suggests that it might be fruitful to take some type of log derivative of the 2-point
function. In the remainder of this section we will show that the 2-point function, when
viewed appropriately, is both a defining function for the spectral curve of the monopole and
a Hermitian metric for the connection on the conformal boundary two-sphere.

Lemma 2.7. The function

λ(w, z) = 1
2∂z̄ ln 〈PwPz〉 (19)

satisfies(i) λ(z, z) = 0, (ii) λ(w, z) is holomorphic in w, and (iii) ∂zλ(w, z) is real and
independent ofw.

Proof.

(i) We have 2λ(z, z) = limw→z ∂z̄ ln 〈PwPz〉 = limw→z〈Pw[∂z̄, Pz]〉/〈PwPz〉. This can
be simplified to〈Pz[∂z̄, Pz]〉 = 〈[∂z̄, Pz]〉 = 0 byProposition 2.6and(14).

(ii) In an open set ofCP
1 × CP

1 choose solutions of(5) normalised by(6) so that
lim t→∞ exp(mt)s+(w, z) is independent ofw and limt→−∞ exp(−mt)r+(w, z) is in-
dependent ofz. (To achieve this choose a normalised solution of(5) s+(w0, z) for a
fixedw = w0 and use limt→∞ exp(mt)s+(w0, z) = lim t→∞ exp(mt)s+(w, z) to de-
fine s+(w, z) for nearbyw. Do the same forr+(w, z) aroundz0.) Therefore,∂Aws+ =
0 = ∂Az r+ and∂Az̄ s+ = µ1(z)s+, ∂Aw̄r+ = µ2(w)r+ for µ1(z) independent ofw and
µ2(w) independent ofz, since we can calculate the coefficients in(16) in the infinite
limits. Then (ii) follows from

∂w̄∂z̄ ln 〈PwPz〉 = ∂w̄∂z̄ ln |(r+, s+)|2 = ∂w̄∂z̄( ln(r+, s+)+ ln(s+, r+))
= ∂w̄µ1(z)+ ∂z̄µ2(w) = 0.

(iii) For λ(w, z) defined in(19)we can choose a local gauge in which

∂Az̄ s+(w, z) = λ(w, z)s+(w, z)

as follows. Chooser+(w, z) so that∂Az r+(w, z) = 0 (as in (ii)). Now chooses+(w, z)
so that(r+(w, z), s+(w, z)) is real. This uniquely determiness+ up to a constantU(1)
gauge transformation given by the ambiguity in the phase ofr+. Then

∂z̄〈PwPz〉 = ∂z̄|(r+, s+)|2 = ∂z̄(r+, s+)2 = 2(r+, s+)(r+, ∂Az̄ s+)

= 2λ(w, z)(r+, s+)2 = 2λ(w, z)〈PwPz〉.
For w′ �= w choose the solutions of(5) normalised by(6) along each family of
geodesics, respectively,r′+(z), s′+(z), r+(z) and s+(z), so that∂Az r+(z) = 0 and
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(r+(z), s+(z)) ∈ R, and∂Az r
′+(z) = 0 and∂Az̄ s

′+(z) = λ(w, z)s′+(z) (defines′+ via
lim t→∞ exp(mt)s′+(z, t) = lim t→∞ exp(mt)s+(z, t)). We can compareλ(w′, z) and
λ(w, z) by definingθ(z) so that(r′+(z),exp(iθ(z))s′+(z)) ∈ R, then

λ(w′, z) = λ(w, z)+ i∂z̄θ(z).

In particular the expression in (iii) is independent ofw:

∂z∂z̄ ln 〈Pw′Pz〉 dz dz̄

= 2(∂zλ(w
′, z)+ ∂z̄λ̄(w

′, z))dzdz̄

= 2(∂zλ(w, z)+ ∂z̄λ̄(w, z)+ i∂z̄∂zθ − i∂z∂z̄θ)dzdz̄ = ∂z∂z̄ ln 〈PwPz〉 dzdz̄

and real since it is the Laplacian of a real-valued function. �

If we replacew in λ(w, z) by its antipodal point̂w = −1/w̄ then althoughλ(ŵ, z) is
defined only outside the set〈PŵPz〉 = 0, the 2-form

1
2∂∂̄ ln 〈PŵPz〉 = ∂zλ(ŵ, z)dzdz̄+ ∂wλ̄(z, ŵ)dwdŵ

+∂wλ(ŵ, z)dwdz̄+ ∂zλ̄(z, ŵ)dzdŵ

is well-defined everywhere. To see this, first notice that the term∂wλ(ŵ, z) vanishes by
Lemma 2.7(ii) and for the same reason∂zλ̄(z, ŵ)dzdŵ vanishes. The term∂zλ(ŵ, z) is
independent ofw by Lemma 2.7(iii) so in particular it is well-defined everywhere since for
anyz we can choose aw such that〈PwPz〉 �= 0, and the same is true of∂wλ̄(z, ŵ)dwdŵ.
Thus the 2-form∂∂̄ ln 〈PŵPz〉 is a well-defined closed(1,1) form. We can use this to prove
that the zero set of the real-valued function〈PŵPz〉 is holomorphic, but instead we will rely
on known facts about the spectral curve of the monopole.

Proposition 2.8. The spectral curve of the monopole is encoded in the2-point function. It
is given by

Σ = {(w, z) ∈ CP
1 × CP

1|〈PŵPz〉 = 0}
for ŵ the antipodal point ofw in CP

1.

Proof. This follows from the simple fact that〈PŵPz〉 = 0 precisely when the solutions
r+, s+ of (5) decay at both ends, which is the same condition for a geodesic to lie in the
spectral curve. Notice that the invariance ofΣ under the real structure(w, z) �→ (ẑ, ŵ)

extends to the 2-point function since〈PŵPz〉 = 〈PzPŵ〉. �

We could have equivalently statedProposition 2.8in terms of the multiplication operation
of the algebraS(A,Φ) in place of the 2-point function sincePŵPz = 0 is equivalent to
〈PŵPz〉 = 0.

Proposition 2.9. The connection on the conformal boundary two-sphere is encoded in the
2-point function byλ(w, z) = (1/2)∂z̄ ln 〈PwPz〉 and

A∞ = λ(w, z)dz̄− λ̄(w, z)dz,
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wherew is fixed and gives a choice of gauge. The curvature on the conformal boundary
two-sphere is given byFA∞ = −〈[∂z, Pz][∂z̄, Pz]〉 dzdz̄.

Proof. Fix w and varyz. The Bogomolny equation implies that the solutions+ of (5)
normalised by(6) also satisfies∂Az̄ s+(z, t) = λ(z)s+(z, t) for λ(z) independent oft. In the
limit, the section limt→∞ exp(mt)s+(z, t) gives a unitary gauge for the connection on the
conformal boundary two-sphere, and henceλ(z)dz̄ is the d̄z component ofA∞. Any other
choice ofs+(z, t) satisfying(6) differs by exp(iθ(z)) and hence

λ(z) �→ λ(z)+ i∂z̄θ(z),

which is a change of theU(1) gauge. In fact, without the normalisation(6), theλ(z) that
arises gives the connection on the conformal boundary two-sphere which is Hermitian with
respect to a Hermitian metric defined by limt→∞‖exp(mt)s+(z, t)‖2. As in the proof of
Lemma 2.7, we can chooser+(z) and s+(z) so that∂Az r+(z) = 0 and(r+(z), s+(z)) is
real. Then∂Az̄ s+ = λ(w, z)s+ soλ(w, z)dz̄ gives the(0,1) part ofA∞ with respect to a
well-definedU(1) gauge (up to a constant gauge transformation) determined by the choice
of w. Thus the first part of the proposition is proven.

The curvature is given by

FA∞ = (∂zλ(w, z)+ ∂z̄λ̄(w, z))dzdz̄ = ∂z∂z̄ ln 〈PwPz〉 dzdz̄

since∂zλ(w, z) is real-valued, and

∂z∂z̄ ln 〈PwPz〉 = ∂z∂z̄〈PwPz〉
〈PwPz〉 − ∂z̄〈PwPz〉∂z〈PwPz〉

〈PwPz〉2

= 〈Pw[∂z, [∂z̄, Pz]] 〉
〈PwPz〉 − 〈Pw[∂z̄, Pz]〉〈Pw[∂z, Pz]〉

〈PwPz〉2
.

This is independent ofw, since it is a gauge invariant 2-form or we see it explicitly in
Lemma 2.7. Thus we can take the limitw → z and sincePz[∂z, Pz] = 0 the second term
disappears to leave

∂z∂z̄ ln 〈PwPz〉 = 〈Pz[∂z, [∂z̄, Pz]] 〉.
Since 0= 〈[∂z̄, Pz]〉 = 〈Pz[∂z̄, Pz]〉 then

0 = ∂z〈Pz[∂z̄, Pz]〉 = 〈[∂z, Pz][∂z̄, Pz]〉 + 〈Pz[∂z, [∂z̄, Pz]] 〉
thus

FA∞ = ∂z∂z̄ ln 〈PwPz〉 dzdz̄ = −〈[∂z, Pz][∂z̄, Pz]〉 dzdz̄. �

The construction of the gauge in whichA∞ = λ(w, z)dz̄ − λ̄(w, z)dz breaks down
if 〈PwPz〉 = 0. In that case, oncer+(z) is chosen, there is not a unique choice ofs+(z)
that satisfies(r+(z), s+(z)) is real. This simply says that theU(1) gauge defined byw is
well-defined, up to locally constant gauge transformations, on the complement of the finite
set of points{z1, . . . , zk} determined by〈PwPzi〉 = 0, or in other words,w defines a flat
structure on a line bundle overS2 − {z1, . . . , zk}.
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An understanding of the behaviour ofA∞ with respect to the gauge inProposition 2.9near
its singularities is a key ingredient in the proof that the connection on the conformal boundary
two-sphere uniquely determines the 2-point function. Equivalently, we must understand the
behaviour of the 2-point function near its zero set.

Lemma 2.10. Near a point(w0, z0) in the zero set, 〈Pŵ0Pz0〉 = 0, the function〈PŵPz〉
vanishes like|ψ(w, z)|2, whereψ(w, z) is a local holomorphic defining function for the
zero set.

Proof. In order to study the vanishing at〈Pŵ0Pz0〉, we may ignore the normalisation condi-
tion (6) of solutionsr+(ŵ, z) ands+(ŵ, z) of (5) since that simply involves multiplying the
solutions by non-vanishing functions. Thus we may choose the solutions so that∂Az r+ =
0 = ∂Az̄ s+ and∂Aw̄r+ = 0 = ∂Aws+. The inner product(r+(ŵ, z), s+(ŵ, z)) is generically a
transverse local section of the line bundleO(k, k) so |(r+(ŵ, z), s+(ŵ, z))|2 vanishes like
|ψ(w, z)|2 and so too does〈PŵPz〉. �

We will summarise the properties of the gauge forA∞ in the following proposition.

Proposition 2.11. The(0,1) part ofA∞, given byηw(z) = λ(w, z)dz̄, satisfies the prop-
erties:

(1) ηw(z) is well-defined outside a set of points{z1, . . . , zk}.
(2) ηw(z) ∼ ln |z− zi|2 dz̄ at eachzi.
(3) dηw(z) is an imaginary valued2-form.
(4) ηw|z=z0 is holomorphic inw.
(5) ηw(w) = 0.

Furthermore, thisU(1) gauge is the unique gauge(up to a constant gauge transformation)
satisfying properties(1)–(3).

Proof. The points{z1, . . . , zk} are determined by〈PwPzi〉 = 0 andLemma 2.10determines
the behaviour of the singularities there. Properties (3)–(5) follow fromLemma 2.7. Any
other 1-form with these properties must differ fromη(z) by i∂z̄θ(z)dz̄ for a real-valued
functionθ(z). By (1), θ(z) is a function defined outside the set of points{z1, . . . , zk} and
by (2) and (3) it is bounded and harmonic and hence constant. Thus i∂z̄θ(z)dz̄ = 0 and the
properties uniquely determineη. �

Properties (4) and (5) are automatically satisfied by anyη(z) satisfying (1)–(3). This
suggests that the connection on the conformal boundary two-sphere in some sense feels
the spectral curve. The next proposition will prove that the connection on the confor-
mal boundary two-sphere does determine the 2-point function and hence the spectral
curve.

Proposition 2.12. The connection on the conformal boundary two-sphere uniquely deter-
mines the2-point function.
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Proof. Suppose we have two monopoles(A,Φ) and (A′, Φ′) with respective algebras
consisting of elementsPz andP ′

z. Fix w and varyz. The two monopoles have the same
connection on the conformal boundary two-sphere precisely when

ln 〈PwPz〉 − ln 〈P ′
wP

′
z〉 (20)

is harmonic inz, z̄, since the curvatures of the connections on the conformal boundary
two-sphere must coincide.

With respect to a local trivialisation ofO(k, k) in the neighbourhood of a point on̄∆denote
by Ψ(w, z) a section with zero set the spectral curve of(A,Φ), and similarlyΨ ′(w, z) for
(A′, Φ′). Then

ln 〈PŵPz〉 − ln 〈P ′
ŵ
P ′
z〉 + ln

|Ψ ′(w, z)|2
|Ψ(w, z)|2 = ln

|Ψ ′(w, ŵ)|2
|Ψ(w, ŵ)|2 (21)

since the left hand side of(21) is well-defined everywhere, i.e. we have cancelled singular-
ities, and for fixedw it is harmonic inz, z̄. Hence it is constant inz and when we evaluate
at z = ŵ we get the right hand side.

Now fix zand take∂w∂w̄ of both sides of(21). The left hand side vanishes since(20)is also
harmonic inw, w̄ by symmetry. Thus ln|Ψ(w, ŵ)|2 − ln |Ψ ′(w, ŵ)|2 is harmonic inw, w̄.
If ξ(w) is harmonic then it is the sum of a holomorphic and anti-holomorphic function since
ξ + iρ is holomorphic for some (locally definedρ(w)) andξ − iρ is anti-holomorphic. We
can chooseΨ to be real and positive on̄∆ so ln|Ψ(w, ŵ)|2 = 2 ln Ψ(w, ŵ) and similarly
for Ψ ′. Thus

Ψ(w, ŵ) = g1(w)g2(ŵ)Ψ
′(w, ŵ)

for g1(w) holomorphic andg2(ŵ) anti-holomorphic. We conclude that

Ψ(w, z) = g1(w)g2(z)Ψ
′(w, z)

since the real analytic functionΨ(w, ŵ) on ∆̄ has a unique extension in a neighbourhood
of ∆̄ ⊂ CP

1 × CP
1. But theng1 andg2 are both constant sinceΨ|∆̄ �= 0 so the zero set of

Ψ cannot contain linesw = w0 or z = z0.
Thus,〈PwPz〉 − 〈P ′

wP
′
z〉 is constant and hence 0 since they agree onw = z. �

Remark. This completes the proof ofTheorem 1.2andCorollary 1.3. On closer observa-
tion, one soon realises that one of the key facts in the proof ofProposition 2.12—Ψ(w, ŵ),
defined up to multiplication by the norm squared of a holomorphic function, uniquely de-
terminesΨ(w, z) up to a constant—leads to another proof ofCorollary 1.3. This viewpoint
is taken in[14].

3. Representation

Consider a representation ofS(A,Φ) on a Hilbert spaceH that satisfies

〈a〉 = tr a anda∗ is the adjoint ofa, (22)
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where we abuse notation and denotea ∈ A to also mean its image in the space of endo-
morphisms ofH . The propertiesP2

z = Pz = P∗
z and trPz = 〈Pz〉 = 1 imply thatPz

is a projectionwith one-dimensional image. The image of each projection is a line inH

so eachPz corresponds to a point inPH and we have a mapq : S2∞ → PH defined by
q(z) = im P(z). In this section we will describe the properties ofA in terms of the mapq.
We will defer the proof of existence of a representation until the end of the section. Letk

be the charge of the monopole.

Proposition 3.1. A representation ofS(A,Φ) on a Hilbert space H satisfying(22) gives
rise to a1–1degree k holomorphic mapq : S2∞ → CP

k.

Proof. We will use|q(z)〉 to label a unit vector in the lineq(z) = im P(z) ⊂ H , and〈q(z)|
its conjugate transpose, so〈q(z)|q(z)〉 = 1. Thus|q(z)〉 is still ambiguous up to a phase,
although

|q(z)〉〈q(z)| = Pz

is well-defined.
To show thatq(z) is smooth atz0, choose aw so thatPwPz0 �= 0 and choose a neigh-

bourhoodU of z0 so thatPwPz �= 0 for z ∈ U. Then fix a unit vector|q(w)〉 and for
eachz ∈ U choose a unit vector|q(z)〉 so that〈q(w)|q(z)〉 is real. Then byLemma 2.1
〈PwPz〉 = tr PwPz = 〈q(w)|q(z)〉2 is smooth inz so〈q(w)|q(z)〉 is smooth inz. Thus the
componentPwq(z) of q(z) is smooth. This is true for almost allw soq(z) is smooth on the
linear span of the image ofq. We may replaceH by this linear span, since the representation
annihilates the complement. Thusq(z) is a smooth map.

The holomorphicity ofq(z) is equivalent to the propertyPz[∂z̄, Pz] = [∂z̄, Pz] proven in
Proposition 2.6. This can be seen by settingPz = |q(z)〉〈q(z)|. Then

|q(z)〉〈q(z)|(|∂z̄q(z)〉〈q(z)| + |q(z)〉〈∂zq(z)|)
= (|∂z̄q(z)〉〈q(z)| + |q(z)〉〈∂zq(z)|) ⇒ |q(z)〉〈q(z)|∂z̄q(z)〉〈q(z)| = |∂z̄q(z)〉〈q(z)|

and by acting on the left by any vector orthogonal to|q(z)〉 we see that

∂z̄|q(z)〉 = λ(z)|q(z)〉
for some functionλ(z), soq(z) is holomorphic. (We use∂z̄|q(z)〉 and|∂z̄q(z)〉 to mean the
same thing.)

The degree ofq(z) is obtained by intersecting its image with a hyperplane. This corre-
sponds to asking for the number of solutionsz to PwPz = 0 for a genericw, which isk,
the charge of the monopole. Furthermore, the degree ofq(z) determines an upper bound
for the dimension of the span of its image, thusq : S2∞ → CP

k ⊂ PH . The mapq(z) is
one-to-one since the proof ofCorollary 2.5shows not only thatPw �= Pz inA but also that
their images under the representation are unequal via trPwPz < 1. �

Proposition 3.2. The spectral curve of a charge kSU(2)hyperbolic monopole with asso-
ciated holomorphic sphereq : S2∞ → CP

k is given by

Σ = {(w, z) ∈ CP
1 × CP

1|(q(ŵ), q(z)) = 0}



P. Norbury / Journal of Geometry and Physics 51 (2004) 13–33 29

whereŵ is the antipodal point ofw and (·, ·) the natural Hermitian product onCk+1.
Equivalently, wk(q(ŵ), q(z)) = ψ(w, z), the defining polynomial ofΣ.

Proof. This is simply a restatement ofProposition 2.8since the product of two projections is
zero precisely when their images are orthogonal. The function(q(ŵ), q(z)) is quite different
from the corresponding function〈PŵPz〉. In particular it is holomorphic, and hence can be
represented by a polynomial. �

Recall from[5] that to an SU(2) integral mass chargek hyperbolic monopole one can
associate a solution of the discrete Nahm equations. In the followingm ∈ Z + 1/2:

γj = γT
−j, −2m+ 2 ≤ j ≤ 2m− 2, j odd,

βj = βT
−j, −2m+ 1 ≤ j ≤ 2m− 1, j even,

βj−1γj − γjβj+1 = 0, −2m+ 2 ≤ j ≤ 2m− 2, j odd,

[β∗
j , βj] + γ∗

j−1γj−1 − γj+1γ
∗
j+1 = 0, −2m+ 3 ≤ j ≤ 2m− 3, j even,

[β∗
2m−1, β2m−1] + vv̄T − γ∗

2m−2γ2m−2 = 0,

whereβi, γj ∈ gl(k,C) andv ∈ C
k admit an action of{gj ∈ U(k)|j = −2m+ 1,−2m+

3, . . . ,0, . . . ,2m− 3,2m− 1, gj = ḡ−j} by

βj �→ gjβjg
−1
j , γj �→ gj−1γjg

−1
j+1, v �→ g−2m+1v.

(Note that we have replacedv with vT from [5] so that the vectorv is a column vector and
matrices act on its left.) The pair(β−2m+1, v) determines the full solution of the discrete
Nahm equations. It was shown in[5] that the map(

β−2m+1 − z

vT

)
: C

k → C
k+1 (23)

is a monad onS2 which determines the boundary value of the hyperbolic monopole. The
monad can be interpreted as a degreek holomorphic mapβ : S2 → CP

k given explicitly
by

β(z) =
(−det(β−2m+1 − z) · (βT

−2m+1 − z)−1v,

det(β−2m+1 − z).

)
. (24)

The map is well-defined up to theU(k) action on the firstk coordinates, sinceβ−2m+1 admits
aU(k) action. The mapβ has the properties that the pull-back of the Kähler formβ∗ω gives
the curvature of the monopole on the conformal boundary two-sphere (and hence its gauge
equivalence class). Furthermore, by a theorem of Calabi the pull-back of the Kähler form,
and hence the curvature of the monopole on the conformal boundary two-sphere, uniquely
determines the mapβ. Thus the boundary value of the monopole determines the monopole.

Proposition 3.3. The spectral curve of(A,Φ) is given by

Σ = {(w, z) ∈ CP
1 × CP

1|(β(ŵ), β(z)) = 0}.
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Proof. This is a simple result from linear algebra. For any two vectorsu, v ∈ C
n:

det(1 + uv̄T) = 1 + (v, u) (25)

since(u, v) �→ (g−1u, ḡTv) preserves(25) for any g ∈ GL(n,C), so we may assume
u = (1,0,0, . . . ), in which case(25) is easy.

Put d(w, z) = det(β̄−2m+1 + 1/w)det(β−2m+1 − z) for ease in reading the next set of
formulae:

(β(ŵ), β(z)) = d(w, z)

(
v̄T
(
β̄−2m+1 + 1

w

)−1

(βT
−2m+1 − z)−1v+ 1

)

= d(w, z)det

(
1 + (βT

−2m+1 − z)−1vv̄T
(
β̄−2m+1 + 1

w

)−1
)

by (25)

= det

(
(β−2m+1 − z)

(
β̄−2m+1 + 1

w

)
+ vv̄T

)
and the last expression defines the spectral curve by specialising the expression in[15] to
the boundary value of the discrete Nahm equations. �

Corollary 3.4. For half-integer mass, the holomorphic mapq : S2∞ → CP
k associated to

the algebraS(A,Φ) coincides up to the action ofU(k+1) on its image with the holomorphic
mapβ : S2 → CP

k arising from the discrete Nahm equations.

Strictly, we should say that in theU(k + 1) orbit of the mapq : S2∞ → CP
k associated

to the algebraS, there is aU(k) orbit of the mapβ.

Proof. The expressions

wk(β(ŵ), β(z)) and wk(q(ŵ), q(z))

coincide since they both define holomorphic sections ofO(k, k) with the same zero set.
Thusβ(z) = uq(z) for someu ∈ U(k + 1). �

Remark. Another corollary ofProposition 3.3is a new proof of the fact that the boundary
value of the monopole determines the monopole when the mass is a half-integer.

Proposition 3.5. There exists a representation ofS(A,Φ)on a Hilbert space H that satisfies
〈a〉 = tr a anda∗ is the adjoint of a fora ∈ A.

Proof. In [14] it is proven that for each chargekmonopole(A,Φ) there exists a holomorphic
mapq : S2∞ → CP

k with two key properties. It determines and is determined by the spectral
curve of (A,Φ) and satisfies the statement ofProposition 3.2, and it determines and is
determined by the boundary valueA∞ of (A,Φ). The curvature ofA∞ is obtained as the
pull-back of the Kähler form onCP

k by q.
As in the proof ofProposition 3.1, use|q(z)〉 to label a unit vector in the lineq(z),

and 〈q(z)| its conjugate transpose, so|q(z)〉〈q(z)| = Rz is well-defined. We will prove
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that Rz = R∗
z is the image ofPz in a representation ofA acting onC

k+1 satisfying
〈Pz1 · · ·Pzn〉 = trRz1 · · ·Rzn = 〈q(z1)|q(z2)〉〈q(z2)|q(z3)〉 · · · 〈q(zn)|q(z1)〉. Since〈a〉 for
anya ∈ A is obtained from derivatives and limits of such quantities, this is enough to show
the representation satisfies(22).

The functions〈PwPz〉 and|〈q(w)|q(z)〉|2 vanish to the same order on (an image under
w �→ ŵ of) the spectral curve of(A,Φ) and vanish nowhere else. Thus

〈PwPz〉 = ξ(w, z)|〈q(w)|q(z)〉|2

for a real-valued nowhere vanishing functionξ(w, z). Fix q(w) and chooseq(z) so that
〈q(w)|q(z)〉 ∈ R for eachz. Take the derivative of each side with respect to∂z̄ so

2λ(w, z)〈PwPz〉 = (2λ(w, z)+ ∂z̄ ln ξ(w, z))ξ(w, z)|〈q(w)|q(z)〉|2

since both〈PwPz〉 and|〈q(w)|q(z)〉|2 defineA∞ = λ(z)dz̄− λ̄(z)dz. Hence

∂z̄ ln ξ(w, z) = 0

soξ(w, z) is constant. It is identically 1 since〈P2
z 〉 = 1 = |〈q(z)|q(z)〉|2.

Note that our assumption that〈PwPz〉 and|〈q(w)|q(z)〉|2 define the same gauge forA∞
is unnecessary since if they differ by the gauge transformation:

λ(w, z) �→ λ(w, z)+ i∂z̄θ(w, z)

for a real-valuedθ(w, z), then we are left with∂z̄ ln ξ(w, z) = −2i∂z̄θ(w, z) in which caseξ
is harmonic and hence constant, thusθ ≡ 0. The general case is proved analogously. Again
since we know the vanishing behaviour of the respective functions, we have

〈Pz1 · · ·Pzn〉 = ξ(z1, . . . , zn)〈q(z1)|q(z2)〉〈q(z2)|q(z3)〉 · · · 〈q(zn)|q(z1)〉
for a nowhere vanishingξ. Vary z1 and fix the other variables. Chooseq(z1) so that
〈q(z1)|q(z2)〉 ∈ R for eachz1. Then again

2λ(z2, z1)〈Pz1 · · ·Pzn〉 = (2λ(z2, z1)+ (∂z̄1 ln ξ))〈Pz1 · · ·Pzn〉
and∂z̄1 ln ξ(z1, . . . , zn) = 0. Thusξ is constant and it is 1 on the diagonalzi = z1, so it is
identically 1. �

Proposition 2.9shows that the charge at infinity is

FA∞ = −〈[∂z, Pz][∂z̄, Pz]〉 dzdz̄

and we expect that it takes on only one sign, i.e.FA∞/2πi to be non-negative with respect to
the orientation i dzdz̄ since it is true for half-integer mass monopoles. This is a consequence
of the following corollary ofProposition 3.5which uses the positivity of the trace on the
product of a matrix with its adjoint.

Corollary 3.6. 〈a∗a〉 ≥ 0 for anya ∈ A, with equality precisely whena = 0.
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Furthermore, using knowledge of when〈a∗a〉 is zero, we can understand the singularities
of q in terms of the curvature. Since∂z̄|q(z)〉 = λ(z)|q(z)〉, q is singular atz0 if and only if
∂z|q(z)〉|z0 = µ|q(z0)〉 for someµ ∈ C. Now

0 = ∂z〈q(z)|q(z)〉|z0 = 〈∂z̄q(z)|q(z)〉|z0 + 〈q(z)|∂zq(z)〉|z0 = λ̄(z0)+ µ

thus [∂z, Pz]|z0 = ∂z|q(z)〉〈q(z)||z0 = (λ̄(z0)+ µ)|q(z0)〉〈q(z0)| = 0. So byCorollary 3.6,
q has a singularity atz0 if and only if FA∞(z0) = 0.

4. Conclusion

The important features ofS(A,Φ) have thus far used the bounded, real-valued 2-point
function 〈PwPz〉. The 3-point function was needed to prove some of the properties of
〈PwPz〉. Since the 2-point function determines the algebra it might be that one need not
look much further to then-point functions. On the other hand, there are features ofS(A,Φ)
that have yet to be understood and may require the higher order functions:

(i) The existence of a finite-dimensional representation ofS(A,Φ) with expectation val-
ues of observables given by the trace implies relations amongst the 4-point func-
tions. More precisely, for a chargek monopole, choose a generic set of points{zi|i =
0, . . . , N} (whereN is the dimension of the span of the image ofq(z), soN = k if
q is “full”) and setPi = Pzi . Then the finite-dimensional representation allows any
Pw to be expressed asαij (w)PiPj (sum repeated indices) where theαij (w) are deter-
mined via〈PwPkPl〉 = αij (w)〈PiPjPkPl〉. Setgijkl = 〈PiPjPkPl〉. Then (for generic
choice{zi|i = 0, . . . , N}) there exists an “inverse”gijkl satisfyinggijklgklmn = δimδjn,
soαij (w) = gijkl 〈PwPkPl〉. Then

〈PwPz〉 = gijkl 〈PwPkPl〉〈PzPiPj〉.
If we multiply both sides by the “determinant” ofgijkl then the relation holds for all
sets{zi|i = 0, . . . , N}, and not just generic sets. It would be more satisfying to be able
to prove the relations directly and use this to get the representation.

(ii) It would be interesting to recognise the mass of the monopole inS(A,Φ). The mass
is encoded in the spectral curve but it is difficult to extract.

(iii) SinceS(A,Φ) brings the spectral curve of(A,Φ) and the connection on the conformal
boundary two-sphere closer together, one might hope to understand both the metrics
of Austin and Braam[5] and Hitchin[10] from a similar perspective.

(iv) One can take finite-dimensional sub-algebras ofS(A,Φ) to possibly uncover further
structure. In the casek = 2, defineSw(A,Φ) ⊂ S(A,Φ) to be the sub-algebra gener-
ated byP1(w) = Pz1 andP2(w) = Pz2 wherePwPzi = 0. This is a finite-dimensional
algebra, generated as a vector space byP1(w),P2(w),P1(w)P2(w) andP2(w)P1(w).
The algebraSw(A,Φ)actually depends on a point in the spectral curve of the monopole,
since the elementsP1(w) andP2(w) are ordered.

The algebraS(A,Φ) of an SU(2) hyperbolic monopole generalises to any gauge group. In
such a case, the scatteringequations (5)admit solutions with various rates of decay. To each
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pointz ∈ S2∞ we associate finitely many operators, one for each level of decay of solutions
of the scattering equation, with given relations. Then-point functions are obtained from
pairing solutions of the scattering equations with specified decay in each direction. For
higher rank Lie groups, just as the operatorsPz define one-dimensional subspaces of a very
large vector space to give a holomorphic mapq : S2∞ → CP

k, the finitely many operators
associated toz ∈ S2∞ will define a flag inside a very large vector space with a corresponding
holomorphic map. The dimension of the vector space will be determined by the charge of
the monopole, as inProposition 3.1.
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